向通用块层提交IO请求

1、分配bio结构
    当向通用块层提交一个IO操作请求的时候,假设被请求的数据块在磁盘上是相邻的,并且内核要已经知道了他们的物理位置。那么首先第一步就是执行bio_alloc()函数分配 一个新的bio描述符,然后内核通过设置一些字段的值来初始化bio描述符。该函数主要做的工作如下:
.将bi_sector字段设置为数据的起始扇区号(如果块设备被分成了几个分区,那么扇区号是相对于分区的起始位置)。
.将bi_size字段设置为涵盖整个数据的扇区数目。
.将bi_bdev设置为块设备描述符的地址(这个是block_device的对象,代表的是一个分区或者是主设备)。
.将bi_io_vec设为bio_vec结构数组的其实地址,数组中的每个元素描述了io操作中的一个段(内存缓存),此外,将bi_vcnt设置为bio中总的段数。
.将bi_rw字段设置为被请求的操作的标志。
.将bi_end_io字段设置成为当bio上的IO操作完成时所执行的完成程序的地址。

以上就是初始化bio结构的主要部分。一旦对一个IO请求所对应的bio结构初始化完成之后,接下来就是提交bio结构了。
2、提交bio结构
   递交一个bio的主要工作是从generic_make_request()函数开始的,我们以此为入口来分析一个bio的递交过程。在每个进程的task_struct中,都包含有两个变量----struct bio *bio_list, **bio_tail,generic_make_request()的主要工作就是用这两个变量来维护当前待添加的bio链表,实际的提交操作会由generic_make_request()调用__generic_make_request()函数完成。而在__generic_make_request()中,会调用到request_queue中定义的make_request_fn函数,也就是特定于设备的提交请求函数来完成后续的工作。在这里便会有一些问题,大部分设备的make_request_fn都可以直接定义为内核实现的__make_request函数,而一些设备需要使用自己的make_request_fn,而自行实现的make_request_fn有可能会递归调用gerneric_make_request(),由于内核的堆栈十分有限,因此在generic_make_request()的实现中,玩了一些小把戏,使得递归的深度不会超过一层。我们注意到bio_tail是一个二级指针,这个值最初是NULL,当有bio添加进来,bio_tail将会指向bio->bi_next(如果bio全都递交上去了,则bio_tail将会指向bio_list),也就是说除了第一次调用外,其他每次递归调用generic_make_request()函数都会出现bio_tail不为NULL的情形,因此当bio_tail不为NULL时,则只将bio添加到由bio_list和bio_tail维护的链表中,然后直接返回,而不调用__generic_make_request(),这样便防止了多重递归的产生。
下面来看generic_make_request()函数的源码实现:

点击(此处)折叠或打开


void generic_make_request(struct bio *bio)
{    if (current->bio_tail) {//current->bio_tail不为空则表明有bio正在提交,也就是说是处于递归调用        /* make_request is active */        bio->bi_next = NULL;        /*这里current->tail有两种情况,当current的bio链表为空时,bio_tail指向的是bio_list        当current的bio链表不为空时,bio_tail指向的是最后一个bio的bi_next指针,因此        这句的实际作用就是将bio添加到了current的bio链表的尾部*/        *(current->bio_tail) = bio;        current->bio_tail = &bio->bi_next;        /*这里直接返回,遍历并且提交bio的工作永远都是交给最先调用的generic_make_request来处理的,避免了多重递归*/        return;    }    /* following loop may be a bit non-obvious, and so deserves some     * explanation.     * Before entering the loop, bio->bi_next is NULL (as all callers     * ensure that) so we have a list with a single bio.     * We pretend that we have just taken it off a longer list, so     * we assign bio_list to the next (which is NULL) and bio_tail     * to &bio_list, thus initialising the bio_list of new bios to be     * added. __generic_make_request may indeed add some more bios     * through a recursive call to generic_make_request. If it     * did, we find a non-NULL value in bio_list and re-enter the loop     * from the top. In this case we really did just take the bio     * of the top of the list (no pretending) and so fixup bio_list and     * bio_tail or bi_next, and call into __generic_make_request again.     *     * The loop was structured like this to make only one call to     * __generic_make_request (which is important as it is large and     * inlined) and to keep the structure simple.     */    BUG_ON(bio->bi_next);    do {        current->bio_list = bio->bi_next;//这里取current的待提交bio链表的下一个bio        if (bio->bi_next == NULL)//bi_next为空,也就是说待提交链表已经空了,只剩下最后一个bio了            current->bio_tail = ¤t->bio_list;//bio_tail指向bio_list        else            bio->bi_next = NULL;//否则将bio提取出来        __generic_make_request(bio);//提交bio        bio = current->bio_list;//取新的待提交bio    } while (bio);    current->bio_tail = NULL; /* deactivate */}

上面的do。。。。while循环中做的工作就是从bio开始沿着bio->bi_next这个链不断地一次取一个bio来进行提交,具体真正完成提交工作是由函数__generic_make_request()来完成的。__generic_make_request()首先由bio对应的block_device获取等待队列q(获取q的过程主要是bio->bi_bdev->bd_disk->queue来进行获取请求队列q的),然后要检查对应的设备是不是分区,如果是分区的话要将扇区地址进行重新计算,最后调用make_request_fn完成bio的递交。其中__generic_make_request()函数的代码如下:

点击(此处)折叠或打开


static inline void __generic_make_request(struct bio *bio)
{    struct request_queue *q;    sector_t old_sector;    int ret, nr_sectors = bio_sectors(bio);//提取bio的大小,以扇区为单位 ,细节为:bio->bi_size>>9(即相当于bio->bi_size/512)    dev_t old_dev;    int err = -EIO;    might_sleep();    //这里检查bio的传输起始扇区是否超过设备的最大扇区,并且两者之间的差不能小于nr_sector    if (bio_check_eod(bio, nr_sectors)) //其中设备的最大扇区数通过:bio->bi_bdev->bd_inode->i_size>>9来计算的        goto end_io;    /*     * Resolve the mapping until finished. (drivers are     * still free to implement/resolve their own stacking     * by explicitly returning 0)     *     * NOTE: we don't repeat the blk_size check for each new device.     * Stacking drivers are expected to know what they are doing.     */    old_sector = -1;    old_dev = 0;    do {        char b[BDEVNAME_SIZE];        q = bdev_get_queue(bio->bi_bdev);//获取对应设备的请求队列 ,通过:bio->bi_bdev->bd_disk->queue来获取gendisk中的请求队列q        if (unlikely(!q)) {            printk(KERN_ERR                   "generic_make_request: Trying to access "                "nonexistent block-device %s (%Lu)n",                bdevname(bio->bi_bdev, b),                (long long) bio->bi_sector);            goto end_io;        }        /*下面做一些必要的检查*/        if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&                 nr_sectors > queue_max_hw_sectors(q))) {            printk(KERN_ERR "bio too big device %s (%u > %u)n",                   bdevname(bio->bi_bdev, b),                   bio_sectors(bio),                   queue_max_hw_sectors(q));            goto end_io;        }        if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))            goto end_io;        if (should_fail_request(bio))            goto end_io;        /*         * If this device has partitions, remap block n         * of partition p to block n+start(p) of the disk.         */         //如果bio指定的是一个分区,则传输点要重新进行计算 。判断是不是分区的方法是看:bio->bi_bdev->bd_contains字段是不是指向的设备本身的block_device对象。如果指向的自身的block_device表示不是分区,否则表示的是分区。        blk_partition_remap(bio);
//该函数比较重要,在下面的会进一步介绍,主要功能是如果是分区需要把bio的扇区换成相对于主设备的绝对扇区号,同时把bio的设备改成相应的主设备        if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))            goto end_io;        if (old_sector != -1)            trace_block_remap(q, bio, old_dev, old_sector);        old_sector = bio->bi_sector;        old_dev = bio->bi_bdev->bd_dev;        if (bio_check_eod(bio, nr_sectors))            goto end_io;        if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&            !blk_queue_discard(q)) {            err = -EOPNOTSUPP;            goto end_io;        }        trace_block_bio_queue(q, bio);        ret = q->make_request_fn(q, bio);//这里是关键,调用请求队列q中的make_request_fn函数处理请求    } while (ret);    return;end_io:    bio_endio(bio, err);}

辅助函数blk_partition_remap():

点击(此处)折叠或打开


static inline void blk_partition_remap(struct bio *bio)
{    struct block_device *bdev = bio->bi_bdev; //通过bio获取该bio所在的block_device对象    /*首先要保证传输的大小不能小于1个扇区并且bdev确实是分区*/    if (bio_sectors(bio) && bdev != bdev->bd_contains) { //判断是不是分区        struct hd_struct *p = bdev->bd_part;//获取该分区的分区信息        bio->bi_sector += p->start_sect;//在传输起点的原基础上加上分区的起始扇区号 ,换成相对于主设备的绝对扇区号        bio->bi_bdev = bdev->bd_contains;//将bio的bdev置为主设备 ,把bio的bi_dbev指向主设备        trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,                    bdev->bd_dev,                    bio->bi_sector - p->start_sect);    }}

可以看到这里将bio的参考对象设置为了主设备,而不是分区,因此对应的扇区起始号也要计算为扇区的绝对值。


大多数的make_request_fn函数都可以直接定义为__make_request(),我们通过这个函数来分析递交bio的关键操作:(该函数是IO调度层的入口函数,做的主要工作就是尝试着将通用块层传下来的bio合并到相应的request中,要么插在某个request的尾部、要么插在某个request的头部,如果不能和任何request进行合并的话,就申请一个新的request,然后通过bio来初始化该request,最后把request插入到request_queue中。)

点击(此处)折叠或打开


static int __make_request(struct request_queue *q, struct bio *bio)
{    struct request *req;    int el_ret;    unsigned int bytes = bio->bi_size;//要传输的大小,以字节为单位的    const unsigned short prio = bio_prio(bio);    const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);    const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);    const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;    int rw_flags;    /*如果BIO_RW_BARRIER被置位(表示必须得让请求队列中的所有bio传递完毕才处理自己),      但是不支持hardbarrier,不能进行bio的提交*/    if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&        (q->next_ordered == QUEUE_ORDERED_NONE)) {        bio_endio(bio, -EOPNOTSUPP);        return 0;    }    /*     * low level driver can indicate that it wants pages above a     * certain limit bounced to low memory (ie for highmem, or even     * ISA dma in theory)     */    blk_queue_bounce(q, &bio);    spin_lock_irq(q->queue_lock);    //如果BIO_RW_BARRIER被置位或者请求队列为空,则情况比较简单,不用进行bio的合并,跳转到get_rq处处理    if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))        goto get_rq;    /**请求队列不为空**/    /*elv_merge()试图寻找一个已存在的request,将bio并入其中*/    el_ret = elv_merge(q, &req, bio);    switch (el_ret) {    case ELEVATOR_BACK_MERGE:        BUG_ON(!rq_mergeable(req));        /*相关检查*/        if (!ll_back_merge_fn(q, req, bio))            break;        trace_block_bio_backmerge(q, bio);        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)            blk_rq_set_mixed_merge(req);        /*这里将bio插入到request尾部*/        req->biotail->bi_next = bio;        req->biotail = bio;        req->__data_len += bytes;        req->ioprio = ioprio_best(req->ioprio, prio);        if (!blk_rq_cpu_valid(req))            req->cpu = bio->bi_comp_cpu;        drive_stat_acct(req, 0);        if (!attempt_back_merge(q, req))            elv_merged_request(q, req, el_ret);        goto out;    case ELEVATOR_FRONT_MERGE:        BUG_ON(!rq_mergeable(req));        if (!ll_front_merge_fn(q, req, bio))            break;        trace_block_bio_frontmerge(q, bio);        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {            blk_rq_set_mixed_merge(req);            req->cmd_flags &= ~REQ_FAILFAST_MASK;            req->cmd_flags |= ff;        }        /*这里将bio插入到request的头部*/        bio->bi_next = req->bio;        req->bio = bio;        /*         * may not be valid. if the low level driver said         * it didn't need a bounce buffer then it better         * not touch req->buffer either...         */        req->buffer = bio_data(bio);        req->__sector = bio->bi_sector;        req->__data_len += bytes;        req->ioprio = ioprio_best(req->ioprio, prio);        if (!blk_rq_cpu_valid(req))            req->cpu = bio->bi_comp_cpu;        drive_stat_acct(req, 0);        if (!attempt_front_merge(q, req))            elv_merged_request(q, req, el_ret);        goto out;    /* ELV_NO_MERGE: elevator says don't/can't merge. */    default:        ;    }get_rq:/**下面的代码对应请求队列为空的情况,需要先分配一个request,再将bio插入***/    /*     * This sync check and mask will be re-done in init_request_from_bio(),     * but we need to set it earlier to expose the sync flag to the     * rq allocator and io schedulers.     */    rw_flags = bio_data_dir(bio);//确定读写标识    if (sync)        rw_flags |= REQ_RW_SYNC;    /*     * Grab a free request. This is might sleep but can not fail.     * Returns with the queue unlocked.     */    req = get_request_wait(q, rw_flags, bio);//分配一个新的request    /*     * After dropping the lock and possibly sleeping here, our request     * may now be mergeable after it had proven unmergeable (above).     * We don't worry about that case for efficiency. It won't happen     * often, and the elevators are able to handle it.     */     //根据bio初始化新分配的request,并将bio插入到request中    init_request_from_bio(req, bio);    spin_lock_irq(q->queue_lock);    if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||        bio_flagged(bio, BIO_CPU_AFFINE))        req->cpu = blk_cpu_to_group(smp_processor_id());    if (queue_should_plug(q) && elv_queue_empty(q))        blk_plug_device(q);    add_request(q, req);//将request插入到请求队列out:    if (unplug || !queue_should_plug(q))        __generic_unplug_device(q);    spin_unlock_irq(q->queue_lock);    return 0;}


elv_merge()是执行合并的关键所在,执行完后会有三种情况:
1.bio添加到了一个request的bio链表尾部
2.bio添加到了一个request的bio链表首部
3.未能找到一个request可以添加,将重新分配一个request

点击(此处)折叠或打开


int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
{    struct elevator_queue *e = q->elevator;    struct request *__rq;    int ret;    /*     * First try one-hit cache.     */    //last_merge指向了最近进行合并操作的request,最先试图将bio合并到该request中    if (q->last_merge) {        ret = elv_try_merge(q->last_merge, bio);        if (ret != ELEVATOR_NO_MERGE) {            *req = q->last_merge;            return ret;        }    }    if (blk_queue_nomerges(q))//请求队列不允许合并请求,则返回NO_MERGE        return ELEVATOR_NO_MERGE;    /*     * See if our hash lookup can find a potential backmerge.     */     //根据bio的起始扇区号,通过rq的哈希表寻找一个request,可以将bio合并到request的尾部    __rq = elv_rqhash_find(q, bio->bi_sector);    if (__rq && elv_rq_merge_ok(__rq, bio)) {        *req = __rq;        return ELEVATOR_BACK_MERGE;    }    /*如果以上的方法不成功,则调用特定于io调度器的elevator_merge_fn函数寻找一个合适的request*/    if (e->ops->elevator_merge_fn)        return e->ops->elevator_merge_fn(q, req, bio);    return ELEVATOR_NO_MERGE;}

在下面在详细的了解有关__make_request()函数的细节。

3、总结
    提交IO请求过程中函数调用的过程;首先generic_make_request()函数,该函数主要的工作就是不断的取出bio结构,然后每取出一个bio结构就调用__generic_make_request()函数来对bio进行相应的处理,比如根据bio结构获取相应的请求队列q,再如如果bio对应的block_device对象是一个分区的,则改变bio的扇区号为与主设备对应的绝对扇区号。然后__generic_make_request()函数调用q->make_request_fn(q, bio)函数来真正的对bio进行处理。而q->make_request_fn()函数主要是通过__make_request()函数来实现的。具体层次为:


generic_make_request()------>____generic_make_request()------->q->make_request_fn()---------->__make_request()函数。
参与0

0同行回答

“答”则兼济天下,请您为题主分忧!

提问者

擅长领域: 服务器Linux云计算
评论110

相关问题

相关资料

相关文章

问题状态

  • 发布时间:2013-07-23
  • 关注会员:0 人
  • 问题浏览:2224
  • X社区推广